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Road accidents are one of the basic road safety determinants. Most research covers large 
territorial areas. The results of such research do not take into account the differences be-
tween individual regions, which often leads to incorrect results and their interpretation. 
What makes it difficult to conduct analyses in a narrow territorial area is the small number 
of observations. The narrowing of the research area means that the number of accidents in 
time units is often very low. There are many zero observations in the data sets, which may 
affect the reliability of the research results. Such data are usually aggregated, which leads to 
information loss. The authors have therefore applied a model that addresses such problems. 
They proposed a method that does not require data aggregation and allows for the analysis 
of sets with an excess of zero observations. The presented model can be implemented in 
different territorial areas.
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Introduction
Road accidents are one of the basic sources of data for road safety 

analysis [1, 5, 10]. However, it is very difficult to find their causes 
as there are numerous factors that affect them [25, 26]. The basic 
road safety analyses carried out in most countries concern the gen-
eral trends in the number of accidents and casualties in relation to 
data characterizing a given area. However, determination of the ex-
act causes of accidents requires much more advanced methods. The 
studies presented in the literature are of varied nature [10, 12]. Some 
of them are limited to evaluation of the impact of single variables 
such as driver drowsiness [22], driving speed before the incident [27], 
traffic jams [19, 29], driver’s gender [2], driving under the influence 
of alcohol or drugs [16], etc. In other publications, many variables 
are analyzed simultaneously. Singh [23], for example, evaluates the 
impact of inexperience and lack of skills characteristic of young driv-
ers, while in the group of older drivers he emphasizes impairment 
of sight, cognitive functions and motor skills. Ashraf et al. [4] also 
take into account many different elements, considering, among other 
things, driver’s gender, experience, time of incident, observance of 
traffic rules [20].

There are a lot of publications on road accidents. All of them ana-
lyze a limited number of factors, as it is not possible to take into ac-
count all variables that affect the number of such incidents. Moreover, 
not all of them are identifiable or measurable, and some data are dif-
ficult to obtain. These include, for example, detailed weather data, 
which in publicly available form concern only average measurement 
values for larger administrative areas and sometimes the whole coun-
try. Such aggregated values are useless, as meteorological conditions 
may vary dramatically among distant regions. 

Another problem in the analysis of road accidents is the availability 
of information in this area. In many countries, no accurate records are 
compiled for areas smaller than the whole country [6, 7], or the avail-
able information is not complete [9, 28], so that only country-wide 
analyses are possible. Examples include the research conducted in 
Saudi Arabia [3], South Korea [4], India [21] or Poland [8, 11, 24].

The results of such research, however, do not take into account the 
differences between individual regions, which may occur even within 
a single country/region. They may result (e.g. when comparing small 
towns and large agglomerations) from different lifestyles, traffic vol-
umes at different times of the day, different numbers of traffic users, 
the condition of road infrastructure, and even driver experience or 
driving culture. Analyses carried out within different areas allow to 
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compare them, find similarities concerning factors conducive to acci-
dents, as well as elements improving road safety, which, when bring-
ing the expected results in one region, can be implemented elsewhere. 
Systematic research, conducted in parallel in different locations, is 
therefore desirable. However, in addition to the data availability, the 
nature thereof poses a significant obstacle in this respect. A significant 
narrowing of the research area results in a very small number of acci-
dents per time unit and a large number of zero observations in the data 
sets, which may affect the reliability of research results. Such data are 
therefore often aggregated prior to analyses [6], which in turn may 
lead to a significant loss of information.

This paper is part of the analysis of issues related to the trend of 
continuous improvement of road safety, carried out through monitor-
ing of hazard levels and permanent evaluation of factors that shape it. 
The authors adopted a research hypothesis stating that meteorological 
factors significantly influence the number of road accidents. Due to 
the high variability of weather conditions in relation to geographi-
cal location, only the city of Warsaw was analyzed. As a result, in 
addition to the main research objective, i.e. to indicate meteorologi-
cal factors that significantly influence the number of accidents, there 
was an additional objective to present the possibility of mathematical 
analysis of a set of data with excess zeros thus eliminating the neces-
sity of measurements aggregation and the related loss of information. 
Moreover, factors related to the time of the incident were also taken 
into account, i.e.: time, day of the week and month.

The research was conducted using data (including meteorological 
data) on road accidents by hour that occurred in 2018 and 2019 in 
Warsaw. Data on accidents were obtained from the Polish Road Safety 
Observatory (operating at the Motor Transport Institute in Warsaw), 
while meteorological data were made available by the Warsaw-Okęcie 
Airport. 

The article consists of an introduction, methodological and practi-
cal parts and a summary. The introduction presents the research objec-
tive and justifies the necessity to conduct it. The methodological part 
presents the applied analysis methods dedicated to the empirical data 
gathered. In the practical part, the research sample and the mathemati-
cal model of road accidents are characterized in detail. The whole 
article ends with the summary of the research carried out and the final 
conclusions. 

1. Methodology
The numerator variable represents a category whose possible val-

ues are non-negative integers. Linear regression is the most common 
way of studying the influence of independent factors on the explained 
variable [17], but using the classic model with the endogenous vari-
able being the numerator variable can lead to serious cognitive errors, 
especially when the expected value of the variable is not large. 

Poisson regression is a popular approach to modeling count data 
[18, 29]. It is assumed that the distribution of observations is consist-
ent with Poisson distribution with the mean depending on the predic-
tors. The problem arises if the empirical data show deviations from 
the assumptions of this model. In many applications, for example, 
an excessive dispersion occurs and the assumption of equality of the 
expected value and variance of distribution is not fulfilled. Therefore, 
other models are adopted in place of Poisson regression that take into 
account two types of zeros, i.e., “true zeros” and “excess zeros”, es-
timating two equations, one for the counting model and one for the 
excess zeros. The most commonly used are the zero-inflated model 
and the hurdle model [1, 13, 15, 30, 31].

The article includes an estimation of parameters of four models: 
the Zero inflated Poisson model (ZIP), the Zero inflated negative 
binomial model (ZINB), the Poisson hurdle model (PLH), and the 
Negative binomial hurdle model (NBLH). Using Akaike’s criterion, 
the selection of the best one was made. A method allowing to simplify 
the expanded model was then presented and a negligible loss of infor-
mation that was associated with this was shown. 

2. Research sample
The presented research is based on the data on road accidents that 

occurred in the years 2018-2019 in the Polish capital city – Warsaw, 
archived on an hourly basis. The research sample consisted of 17,250 
observations. The narrowed area of research strongly influenced the 
number of events recorded in each hour. The maximum number of ac-
cidents in the analyzed period was as low as 4, and the average value 
was 0.11. Other descriptive statistics are presented in Table 1.

The reason behind such results of descriptive statistics is that the 
vast majority of observations are zeros. There are as many as 15,723 
of them in the whole set, which represents more than 89% of the 
measurements. The remaining numbers are presented in Table 2.

The distribution of the data gathered, sorted in ascending order, is 
shown in Fig. 1.

Fig. 1. The observations gathered, sorted in ascending order (by number of 
accidents)

The form of the dependent variable dictated the use of mathemati-
cal models that are dedicated to data with excess zeros. Since, accord-
ing to the assumed research hypothesis, the research objective was 
to analyze the influence of meteorological factors on the number of 
accidents, additional information was collected for each hour describ-
ing the weather conditions prevailing then. Detailed data concerning 
Warsaw were obtained from the Warsaw-Okęcie Airport, from Me-
teorological Aerodrome Reports. It is a coded weather report format 
used in aeronautical meteorology and weather forecasting. It contains 
information about ambient temperature, dew point temperature, pres-
sure, wind speed and direction, precipitation, cloud cover, cloud base 
height, visibility. It may also contain other important annotations, 
concerning for example the condition of runways. 

The set of factors used in the study contained information on 
visibility, wind speed, pressure, temperature, precipitation, type of 
clouds, mist. 

Table 1. Basic descriptive statistics of the Warsaw road accidents variable

Min. 1st Qu. Median Mean 3rd Qu. Max.

0 0 0 0.114 0 4

Table 2. Number of individual observations in the data set

Number of accidents 0 1 2 3 4

Number of observations 15,723 1,618 162 16 1
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The original data set adopted for the study contained 7 variables 
that could occur in the fixed effect category and that were used for 
preliminary model construction, while their descriptive statistics are 
presented in Table 3. Additionally, the variables resulting from the 
date – calendar, i.e. month, day of the week and time of the incident, 
were included. 

3. Mathematical model of road accidents
The parameters of four models were estimated: Zero inflated Pois-

son (ZIP) model, Zero inflated negative binomial (ZIMB) model, 
Poisson logit hurdle (PLH) model, Negative binomial logit hurdle 
(NBLH) model. Since some of the variables had no significant im-
pact on the number of accidents, the following variables were used 
for the final estimation of model parameters: clouds, precipitation, 
mist, temperature, month, week, hour. For the models constructed in 
this way the value of the AIC information criterion was calculated 
and on its basis the best of them was selected, which turned out to be 
the negative binomial hurdle model, for which the AIC value was the 
lowest (Table 4). 

Thus, the number of accidents can be presented as a two-part model 
(see Appendix 1 for estimated parameter values). First of all, it is a logit 
model, which is designed to model the probability of values 0iy = . 
The second part concerns positive values and is modeled as a variable 
with negative binomial distribution, taking into account selected predic-
tors. The resulting model can help us to determine which conditions are 
conducive to road accidents. The model is interpreted as two separate 
processes. First of all, it is a process that generates zero numbers for 
road accidents. The constructed model indicates that the probability of 
no incident is significantly influenced by cloud and fog variables, which 

increase this probability. Among the individual categories, overcast 
turned out to be significant, which is probably due to the increased cau-
tion of drivers during such unfavorable weather conditions, as well as 
cloudless sky and no mist, which in turn increase visibility and facilitate 
safe driving. The days of the week (Sunday and Tuesday) also proved to 
be significant, as they increase the probability of accidents. The second 
part of the model is a process that generates the number of road acci-
dents, taking into account the occurrence of at least one accident. The 
stimulants in this case are overcast (OVC) and temperature, as well as 
the following hours: 4:00 a.m. and from 6:00 a.m. to 10:00 p.m. The 
destimulants are: no precipitation, the months of July, August and No-
vember, and the following days of the week: Tuesday and Wednesday. 

Not all the factors for individual predictors in groups are statis-
tically significant. Moreover, the model is extensive, due to a large 
number of independent variables. It was therefore analyzed whether it 
would be possible to combine variables in individual groups in order 
to simplify the model.

4. Simplified model construction

4.1. Analysis of qualitative variables
To simplify the model, an analysis was made of the possibility of 

combining the variables in each group. For this purpose, the Kruskal-
Wallis test was used to see if there were differences between the vari-
ables in the group and then the Wilcoxon rank sum test was used to 
determine which variables in the group were significantly different 
[14]. Tests were conducted for each group of variables.

Analysis of individual categories of the cloud group using the 
Kruskal-Wallis test showed that there are significant differences be-
tween at least two categories. The Kruskal-Wallis test statistics are 

22.433 T = and 4  4.33*10p value −− = . This is confirmed by the in-
teraction plot presented in Figure 2. If the influence of each category 
in the group was the same, the lines in the plot would be parallel. 

In order to find the categories that are significantly different from 
each other, Wilcoxon rank sum test was used, the results of which are 
presented in Table 5.

Based on the Wilcoxon rank sum test results, three groups were dis-
tinguished. The first one includes cloudless sky and NSC, FEW, SCT 
clouds. Consistency within the group was again confirmed by the 
Kruskal-Wallis test (T = 7.059, p-value = 0.07). In the second group 
there were only clouds of BKN type, while in the third – of OCV 

Table 4. Values of AIC information criterion of individual models

model AIC

Zero inflated Poisson model 11,892

Zero inflated negative binomial model 11,894

Poisson hurdle model 11,806

Negative binomial hurdle model 11,766

Table 3. Fixed effects/basic descriptive statistics

Quantitative variables Min. 1st Qu. Median Mean 3rd Qu. Max.

Wind direction [°] 100 160 250 278.2 310.0 901.0

Wind speed [KT] 0 4 6.000 6.729 9.000 77.000

Visibility [m] 180 9,999 9,999 9,340 10,000 10,004

Pressure [hPa] 987 1,012 1,012 1,012 1,012 1,038

Temperature [°C] -16.00 3.00 11.00 10.88 18.00 36.00

Qualitative variables Category – number of observations in the set

Mist No mist – 15,707 BR – 1,252 FG - 561 where BR - Mist (brume) (visibility 1,000-5,000 m) , FG - Fog 
(thickness from ground to above 2m, visibility below 1,000 m)

Clouds

No clouds – 8,030 BKN – 4,451 FEW – 2,271 NSC - 776 OCV - 343 SCT - 1649

NSC - no significant clouds. FEW - 1-2 octas covered (12.5-25%), SCT - 3-4 octas covered (37.5%-50%), BKN - 5-7 octas 
covered (62.5%-87.5%), OVC - 8 octas coverage (100%)

Precipitation RA - 2865 SN - 300 No precipitation 
- 14,355 RA – Rain, SN – Snow
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type. The analysis of the precipitation variable showed no significant 
differences in individual categories. Kruskal-Wallis T test statistics = 
4.416 and p-value = 0.11. 

Next, the variables related to time, i.e. month, day of the week and 
time of the incident were analyzed. The results of the Kruskal-Wallis 
test for the month variable indicate significant differences in the group 
(   58.079T = , 08  2.11 0p value −− = ). Based on the Wilcoxon test re-
sults (Table 6) three groups of similar months were distinguished. 

The following were distinguished:
Group 1, which included April, May, June, September and Oc- –
tober. Consistency within the group was confirmed again by the 
Kruskal-Wallis test (T = 1.027, p-value = 0.906).
Group 2, which included the months of January, February,  –
March, July, August, November and December (T = 11.564, p-
value = 0.0724).

The analysis of individual days of the week also revealed the exist-
ence of significantly different groups (T = 61.524, p-value = 2.2 1110− ), 
which were created on the basis of the Wilcoxon test results (Table 7).

Two groups of days of the week were created: Group 1, which 
included Monday, Thursday, Friday, Saturday, Sunday (consistency 
within the group was confirmed by the Kruskal-Wallis test, T = 5.096, 
p-value = 0.278) and group 2, which included Tuesday and Wednes-
day (T = 0.723, p-value = 0.395). The last variable studied was the 
time of the incident, for which the zero hypothesis of equal distribu-
tion in groups was also rejected (T = 723.01, p-value < 2.2 1610− ).

Based on the Wilcoxon test, the following groups were created:
Group 1: 10:00 p.m., 06:00 a.m., 11:00 p.m., 09:00 p.m. ( – T = 
9.733, p-value = 0.021).
Group 2: 00:00, 01:00 a.m., 02:00 a.m., 03:00 a.m., 04:00 a.m.,  –
05:00 a.m. (T = 11.25, p-value = 0.0467).
Group 3: 07:00 a.m., 08:00 a.m., 09:00 a.m., 10:00 a.m., 11:00  –
a.m., 12:00, 01:00 p.m., 02:00 p.m., 03:00 p.m., 06:00 p.m., 
07:00 p.m., 08:00 p.m. (T = 22.136, p-value = 0.024).
Group 4: 04:00 p.m., 05:00 p.m. (T = 0.002, p-value = 0.969). –

Table 5. Pairwise comparisons using Wilcoxon rank sum test for the cloud 
variable

BKN FEW NONE NSC OCV

FEW 0.020     

NONE 0.222 0.119    

NSC 0.415 0.038 0.171   

OCV 0.002 0.043 0.004 0.002  

SCT 0.171 0.470 0.496 0.123 0.020

Table 6. Pairwise comparisons using Wilcoxon rank sum test for the month variable

 January February March April May June July August September October November

February 0.038           

March 0.543 0.161          

April 0.222 0.001 0.060         

May 0.106 0.001 0.020 0.731        

June 0.166 0.001 0.038 0.892 0.852       

July 0.199 0.466 0.556 0.010 0.003 0.006      

August 0.852 0.062 0.710 0.157 0.062 0.108 0.307     

September 0.166 0.001 0.038 0.892 0.852 0.997 0.006 0.108    

October 0.463 0.004 0.147 0.719 0.466 0.592 0.035 0.307 0.592   

November 0.045 0.915 0.189 0.001 0.001 0.001 0.529 0.079 0.001 0.004  

December 0.189 0.478 0.543 0.009 0.003 0.006 0.543 0.295 0.006 0.033 0.543

Table 7. Pairwise comparisons using Wilcoxon rank sum test for the day of the week variable

Monday Tuesday Wednesday Thursday Friday Saturday

Tuesday 0.042      

Wednesday 0.221 0.519     

Thursday 0.642 0.001 0.013    

Friday 0.537 0.006 0.045 0.642   

Saturday 0.235 0.001 0.008 0.814 0.537  

Sunday 0.070 0.000 0.000 0.519 0.279 0.001

Fig. 2. Interaction plot of individual categories in the cloud group
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When it comes to the time of the incident variable, the consistency 
within groups was confirmed by the Kruskal-Wallis test at the sig-
nificance level of 0.01α = , and therefore, a chi-squared test was also 
performed, which is also used to compare the distributions in groups. 
Consistency was confirmed at the significance level of 0.05 α = (Ta-
ble 8).

4.2.	 Estimation	of	simplified	model	parameters
Grouping of variables allowed to construct a simplified Negative 

binomial hurdle model. Estimates of parameters of the first and sec-
ond part of the model are presented in Table 9.

The constructed model is simpler and thus more transparent. The 
influence of individual variables is obviously the same as in the ex-
tended model. The AIC criterion is 11,897, compared to the AIC = 
11,766 obtained for the model before grouping, which means a slight 
loss of quality in the context of significant model simplification. The 
adjustment of the proposed model to the empirical data is presented 
in Fig 3.

5. Summary
In order to address the problems presented in the introduction, 

the article proposes a mathematical model allowing to estimate the 
number of road accidents, including a correction for random effect 
(i.e. resistant to excess zeros in the data set) and eliminating the 
problem of excessive dispersion by applying the binomial negative 
distribution. The application of such a model to traffic accidents is 
virtually non-existent/unnoticeable in the literature. This is because 
traffic accident data are usually aggregated to lower frequency data 
or such events are considered for large areas. While this provides a 
sufficient number of observations for analysis, it is associated with 
significant data loss or even obtaining a model that is inadequate for 
individual component areas. Therefore, this article proposes a model 
that solves these problems while providing a reliable assessment of 

the factors affecting accidents for a narrow area and a high frequency 
of observations. In this study, meteorological factors were the main 
focus, however other variables that were not used in this case, e.g., 
terrain characteristics, traffic conditions, vehicle type, etc., can also 
be studied in this way.

The authors focused on meteorological factors because they are 
often considered the cause of accidents, and there are few studies that 
support this. Some of the numerous variables being analyzed turned 
out not to significantly influence road hazard occurrence. Tempera-
ture, precipitation, type of cloud coverage and mist turned out to be 
significant. Moreover, the impact of variables related to the date of the 
event, i.e. calendar month, day of the week and time of the accident, 
was also significant.

The presented study shows that selected weather factors influence 
the number of accidents. This may be due to their impact on the con-
dition of road traffic users and is an important part of further work in 
this area. Furthermore, the results obtained prompt us to consider oth-
er factors not taken into account here, such as traffic volume, which 
can be correlated with weather conditions (cloudy, rainy days may be 
conducive to vehicle use) as well as the date of the incident (peak traf-
fic hours, varying traffic volumes depending on the day of the week or 
month). The above assumptions will be the subject of further research 
/ investigations by the authors. 

Table 8. Chi-squared test results for each group of days of the week

Pearson’s Chi-squared test p-value

Group 1 12.415 0.053

Group 2 16.357 0.090

Group 3 59.573 0.059

Group 4 0.145 0.986

Table 9. Estimates of the parameters of the simplified Negative binomial hurdle model 

Pa
ra

m
et

er
s

Group Factor
First part of the model Second part of the model

Estimate Std. Error z value Pr(>|z|) Estimate Std. Error z value Pr(>|z|)

Intercept −4.482 0.617 −7.261 0.000 −2.942 0.130 −22.672 < 2e−16

Clouds
gr I 0.337 0.244 1.383 0.167 −0.094 0.067 −1.395 0.163

OCV 2.256 0.269 8.385 <2e−16 0.612 0.165 3.714 0.000

Fog
FG −12.756 0.590 −30.73 <2e−16 −0.165 0.220 −0.748 0.454

No fog 1.039 0.455 2.284 0.022 0.037 0.110 0.333 0.739

Temperature 0.009 0.009 0.934 0.351 0.009 0.003 2.668 0.008

Month Group I 0.487 0.162 3.004 0.003 0.312 0.056 5.525 0.000

Day of the 
week Group 2 0.256 0.143 1.794 0.073 0.085 0.056 1.530 0.126

Hour

Group II −0.817 1.076 −0.759 0.448 −1.252 0.137 −9.149 <2e−16

Group III 1.036 0.416 2.494 0.013 0.902 0.084 10.772 <2e−16

Group IV 1.326 0.430 3.081 0.002 1.258 0.103 12.270 <2e−16

Fig. 3. Adjustment of the Negative binomial hurdle model (red line) to empiri-
cal data
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Appendix 1. Estimates of parameters of the Negative binomial hurdle model 

NBLH First part of the model Second part of the model

Parameter Estimate Std, Error z−value Pr(>|z|) Estimate Std, error z value Pr(>|z|)        

(Intercept) −7.096 6.877 −1.032 0.302 −3.446 0.302 −11.417 <210−16

Clouds

FEW 0.285 0.299 0.952 0.341 −0.071 0.091 −0.785 0.432
None 0.249 0.264 0.941 0.347 −0.113 0.077 −1.474 0.140
NSC 1.299 0.397 3.271 0.001 0.199 0.157 1.272 0.204
OCV 2.146 0.289 7.427 1.1110−13 0.701 0.170 4.127 3.6710−5

SCT 0.457 0.319 1.432 0.152 −0.112 0.101 −1.112 0.266

Precipitation
SN −0.694 1.022 −0.679 0.497 −0.236 0.236 −1.003 0.316
no −0.247 0.180 −1.371 0.170 −0.147 0.075 −1.970 0.049

Fog
FG −10.960 85.375 −0.128 0.898 −0.234 0.230 −1.021 0.307
None 1.152 0.468 2.464 0.014 0.064 0.113 0.564 0.573

Temperature 0.019 0.017 1.106 0.269 0.013 0.006 2.232 2.232

Month

January −0.177 0.560 −0.316 0.752 0.084 0.182 0.462 0.644
February −0.194 0.623 −0.311 0.756 −0.256 0.187 −1.369 0.171
March −0.160 0.514 −0.311 0.756 −0.055 0.163 −0.339 0.735
April 0.366 0.280 1.310 0.190 0.110 0.131 0.842 0.400
May 0.157 0.296 0.530 0.596 0.074 0.120 0.617 0.537
July −0.599 0.364 −1.644 0.100 −0.409 0.126 −3.250 0.001
August −0.288 0.336 −0.857 0.391 −0.249 0.121 −2.052 0.040
September 0.209 0.294 0.711 0.477 0.096 0.123 0.780 0.435
October 0.163 0.352 0.462 0.644 0.067 0.137 0.488 0.626
November −0.102 0.459 −0.223 0.824 −0.403 0.168 −2.399 0.017
December 0.266 0.482 0.551 0.582 −0.178 0.173 −1.024 0.306

Day of the 
week

Monday −0.242 0.242 −1.003 0.316 −0.116 0.094 −1.231 0.218
Tuesday −0.651 0.339 −1.922 0.055 −0.368 0.099 −3.708 0.000
Wednesday −0.217 0.261 −0.831 0.406 −0.282 0.097 −2.918 0.004
Friday −0.116 0.225 −0.515 0.607 −0.054 0.093 −0.580 0.562
Saturday −0.235 0.227 −1.032 0.302 0.015 0.092 0.162 0.871
Sunday −0.632 0.264 −2.390 0.017 0.087 0.091 0.958 0.338

Hour

1:00 AM −4.167 67.952 −0.061 0.951 −0.565 0.383 −1.476 0.140
2:00 AM 4.117 6.917 0.595 0.552 −0.307 0.357 −0.860 0.390
3:00 AM −3.119 52.172 −0.060 0.952 −0.645 0.395 −1.634 0.102
4:00 AM −2.548 47.382 −0.054 0.957 −1.168 0.472 −2.477 0.013
5:00 AM −6.395 160.937 −0.040 0.968 0.039 0.325 0.118 0.906
6:00 AM 3.639 6.870 0.530 0.596 0.948 0.277 3.423 0.001
7:00 AM 4.478 6.853 0.654 0.513 1.577 0.260 6.060 1.3610−9

8:00 AM 4.405 6.851 0.643 0.520 1.931 0.255 7.573 3.6410−14

9:00 AM 4.297 6.852 0.627 0.531 1.584 0.261 6.069 1.2910−9

10:00 AM 4.156 6.854 0.606 0.544 1.724 0.259 6.655 2.8310−11

11:00 AM 3.549 6.859 0.517 0.605 1.828 0.258 7.089 1.3510−12

12:00 4.640 6.851 0.677 0.498 1.814 0.258 7.022 2.1910−12

1:00 PM 3.808 6.857 0.555 0.579 1.886 0.258 7.326 2.3710−13

2:00 PM 4.180 6.854 0.610 0.542 1.724 0.260 6.644 3.0610−11

3:00 PM 4.130 6.853 0.603 0.547 1.783 0.258 6.904 5.0710−12

4:00 PM 4.423 6.850 0.646 0.519 2.146 0.253 8.475 <210−16

5:00 PM 4.530 6.850 0.661 0.508 2.135 0.253 8.450 <210−16

6:00 PM 4.297 6.850 0.627 0.531 2.034 0.253 8.027 9.9810−16

7:00 PM 4.256 6.853 0.621 0.535 1.871 0.255 7.327 2.3510−13

8:00 PM 3.533 6.860 0.515 0.607 1.561 0.261 5.991 2.08*10−9

9:00 PM 2.561 6.919 0.370 0.711 1.134 0.271 4.186 2.8310−5

10:00 PM 3.423 6.882 0.497 0.619 0.908 0.278 3.262 0.001
11:00 PM −8.839 401.660 −0.022 0.982 0.429 0.300 1.429 0.153
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